List of Projects

Data Analytics (CS61061) Autumn-2023

Date of Announcement: 11.11.2023

Instructions:

- There is no group in this project. One student one project.
- The particular project assigned to a student should implement that project only. If you implement any other project, it will not be considered for evaluation.
- Any plagiarism attracts rejection of the submissions.
- No credit will be given if a student solves a project which is not assigned to him/her.
- The evaluation of the project performance will be based on the report.
- The report should include all the steps involved in the project implementation with programming code, a snapshot of the output, and results as appropriate.
- Last date of submission of the report: 01.12.2023, 22:00 hours (IST) (hard deadline).
- <u>CLICK HERE</u> for the link to submit your project. You can submit only one PDF file of size less than 10MB. Don't submit any .py files, .dcox files, etc.

Projects:

Project Code: DA-01

- 1. Identify the independent and dependent attributes.
- 2. Characterize the independent attributes depending on three types of variables
 - a. Nominal
 - b. Categorical
 - c. Continues
- 3. Find the correlation coefficient between individual independent attributes and dependent ones based on the nature of attributes.
- 4. Arrange the correlation coefficients in descending order.
- 5. Identify the three most highly correlated independent attributes from the set of attributes.

Dataset URL: <u>https://ieee-dataport.org/open-access/heart-disease-dataset-</u> <u>comprehensive</u>

- 1. Identify the independent and dependent attributes.
- 2. Characterize the independent attributes depending on three types of variables

- a. Nominal
- b. Categorical
- c. Continues
- 3. Perform below stated two non-parametric tests between each independent and dependent attribute and calculate p-values.
 - a. Mann-Whitney U test for continuous variable
 - b. Chi-square test for nominal and categorical variable
- 4. Arrange the p values in ascending order.
- 5. Identify the three most significant independent attributes that have a high impact on dependent variable.

Dataset URL : <u>https://ieee-dataport.org/open-access/heart-disease-dataset-</u> <u>comprehensive</u>

Project Code: DA-03

- 1. Identify the independent and dependent attributes.
- 2. Calculate the following statistical details of each attribute and represent them in tabular form
 - a. Mean
 - b. Median
 - c. Mode
 - d. Standard deviation
 - e. Q1, Q3
 - f. Kurtosis
- 3. Identify the data distribution pattern (normal, skewed) of the proper attributes and remove the outliers accordingly.
- 4. After removing outliers from the entire dataset, calculate the statistical details of each attribute according to point 2 and represent them in tabular form.

Dataset URL :

https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease

- 1. Find the data distribution pattern of each attribute and, according to that, remove the outliers from the attribute values and generate an updated dataset.
- 2. Create a new attribute, "Spending" with the following attributes.

MntWines, MntFruits, MntMeatProducts, MntFishProducts, MntSweetProducts, MntGoldProds

[**Note:** "Spending" is the sum of the amount spent on the 6 product categories]

2. Test the hypothesis, whether there is any monotonic association between income and spending amount. (Test the hypothesis in 5%, 1% level of significance)

Hint: Spearman rank correlation can be applied.

3. Test the hypothesis, whether Education and Marital_Situation are independent or not. (Test the hypothesis in 5%, 1% level of significance)

Hint: Chi-square test can be applied.

Dataset URL :

https://drive.google.com/file/d/13c2CG8hCDh6IU_wsv1mlmKiFl6ONS06o/vie w?usp=drive_link

Project Code: DA-05

- 1. Create Histogram plots for all the relevant attributes to visualize the patterns in the dataset.
- 2. Answer the following:
 - a) Does gender affect who gets searched during a stop?
 - b) How does drug activity change by time of day?
- 3. Use suitable statistical hypothesis testing method/methods to check the claim that 'the average age of the white males who were stopped for speeding is less than 34'.
- 4. Show the variation of accident frequencies throughout the time of the day. (time of the day versus accident frequencies)

Dataset URL: <u>https://www.kaggle.com/datasets/faressayah/stanford-open-policing-project/data</u>

- 1. Using correlation analysis, find out which of the two attributes are mostly correlated.
- 2. Create a heat map and other plots to show the correlation between all pairs of attributes.
- 3. Use statistical testing to check the claim that the 'radius_mean' of the Malignant tumors is less than 14.

4. Use the Bayesian Classifier to classify between Malignant and Benign tumors. Use 10-fold cross-validation and report the classification accuracy, precision, recall, F1-score, etc., for individual folds as well as the overall average.

Dataset URL: <u>https://www.kaggle.com/datasets/yasserh/breast-cancer-</u> <u>dataset</u>

Project Code: DA-07

- Study and find out which of the ML classifiers are suitable for the classification in this case. Write in the report in detail about the same. What are the adjustments/modifications required for the ML classifiers or for the dataset to perform classification for categorical attributes?
- 2. Apply all the ML classifiers (that are covered in the theory class) for this classification task with 10-fold cross-validation.
- 3. Report the classification accuracy, precision, recall, F1-score, etc., for individual folds as well as the overall average.
- 4. Utilize the lightGBM and CatBoost classifiers, that are claimed to be specialized for categorical data classification. Compare their results with the traditional models.

Dataset URL : <u>https://www.kaggle.com/datasets/uciml/mushroom-</u> classification/data

Project Code: DA-08

We want to predict the amount of precipitation(rain) given the weather attributes for a particular day using regression analysis. Split the dataset into training and testing sets and report the RMSE and R-2 score for each regression problem mentioned below.

- 1. Are there any missing values, NaN present in this dataset? What are steps that you have taken to handle the same? Write about the same in the report in detail.
- 2. Use simple linear regression to predict 'Precip' utilizing individual weather attributes as mentioned before.
- 3. Use multiple linear regression to predict 'Precip' utilizing all the weather attributes.
- 4. Use nonlinear regression with order 2, 3, 4, 5, and 6 to predict the 'Precip' and compare all the results through scatter plots or other plots.

Dataset URL: https://www.kaggle.com/datasets/smid80/weatherww2

Project Code: DA-09

We want to create an ML classification model for this dataset. (CNN strictly prohibited)

- 1. Perform necessary preprocessing steps. What preprocessing steps that you need to perform? Discuss in detail in the report.
- 2. Extract meaningful features from the images. The evaluation will be mainly based on the number and quality of features extracted, feature extraction methods, etc. (*Plagiarism strictly prohibited*)
- 3. Utilize multiple ML algorithms you covered in the theory class for classification, following 10-fold cross-validation.
- 4. Report the classification accuracy, precision, recall, F1-score, etc., for individual folds as well as the overall average.

Dataset URL :

https://www.kaggle.com/datasets/ganeshmundra/classification-ofimages

Project Code: DA-10

- 1. Identify the independent and dependent attributes.
- 2. Use K-Fold Cross validation method for Test and Train split of the data.
- 3. Use the following techniques to understand the relation between experience and salary:
 - a. Linear Regression
 - b. Polynomial Regression (should test with multiple polynomial

degrees)

- 4. Use at least three different evaluation metrics for all the experiments.
- 5. Find the best method for the given dataset stating proper reasons.

Dataset URL :

https://www.kaggle.com/datasets/saquib7hussain/experience-salarydataset

Project Code: DA-11

- 1. Analyze the dataset statistics and provide some fist level insights.
- 2. Use K-Fold Cross validation method for Test and Train split of the data.
- 3. Use the following algorithms for classification:

a. SVM (OVO)

b. SVM (OVA)

c. Decision Tree

- 4. Explain the confusion matrix for each of the classification algorithms with proper insights.
- 5. Chose the best model using proper evaluation metric like Precision, Recall, F1-Score and Accuracy.

Dataset URL: <u>https://archive.ics.uci.edu/ml/datasets/Wine</u>

Project Code: DA-12

- 1. Analyze the dataset statistics and provide some fist level insights.
- 2. Use feature selection techniques to remove at least two features from the dataset.
- 3. Use feature extraction to generate a new feature.
- 4. Use K-Fold Cross validation method for Test and Train split of the data.
- 5. Use polynomial regression (*should test with multiple polynomial degrees*) for Housing price prediction.
- 6. Chose the best model using proper evaluation metric and state which dataset gives the best results.

Dataset URL: <u>https://www.kaggle.com/datasets/ashydv/housing-dataset</u>

Project Code: DA-13

- 1. Analyze the dataset statistics and provide some fist level insights.
- 2. Use K-Fold Cross validation method for Test and Train split of the data.
- 3. Use the following algorithms for classification:
 - a. SVM (Use proper technique to fit categorical data)
 - b. Decision Tree
- 4. Explain the confusion matrix for each of the classification algorithms with proper insights.
- 5. Chose the best model using proper evaluation metric like Precision, Recall, F1-Score and Accuracy.

Dataset URL: <u>https://archive.ics.uci.edu/dataset/19/car+evaluation</u>

- 1. Preprocess the data features and Report.
- 2. Split the data into 80-10-10% train/validation/test data.
- 3. Run Bayesian Classifier, Decision Tree Classifier and SVM on the data.

4. Report Accuracy, Precision, Recall, F1-Score, AUC-ROC and Confusion Matrix for each model.

Dataset URL: <u>https://data.world/data-society/cambridge-crime-data-2009-</u> 2016

Project Code: DA-15

- 1. Extracts the features from the images. You can use any popular tools to extract the features. Report the name of the tools and feature extraction procedure.
- 2. Split the data into 80-10-10% train/validation/test data.
- 3. Run Bayesian Classifier, Decision Tree Classifier and SVM on the data.
- 4. Report Accuracy, Precision, Recall, F1-Score, AUC-ROC and Confusion Matrix for each model.

Dataset URL:

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427

Project Code: DA-16

- 1. Extracts the features from the images. You can use any popular tools to extract the features. Report the name of the tools and feature extraction procedure.
- 2. Split the train dataset into 90-10% train/validation data and use test dataset for evaluation.
- 3. Run Bayesian Classifier, Decision Tree Classifier and SVM on the data.
- 4. Report Accuracy, Precision, Recall, F1-Score, AUC-ROC and Confusion Matrix for each model

Dataset URL :

https://drive.google.com/file/d/1drmV1adl5B8 msbJNAJMIgqvki30qdC3/view ?usp=sharing

Project Code: DA-17

1. Extracts the features from the images. You can use any popular tools to extract the features. Report the name of the tools and feature extraction procedure.

- 2. Split the data into 80-10-10% train/validation/test data.
- 3. Run Bayesian Classifier, Decision Tree Classifier and SVM on the data.
- 4. Report Accuracy, Precision, Recall, F1-Score, AUC-ROC and Confusion Matrix for each model.

Dataset URL : <u>https://www.kaggle.com/datasets/jehanbhathena/weather-dataset</u>

Allocation:

Serial No	Roll No	Project Code	37	19EE38015	DA-03
1	16CS10055	DA-01	38	19EE38018	DA-04
2	18CS30035	DA-02	39	19EE38019	DA-05
3	19AE30013	DA-03	40	19EE38022	DA-06
4	19AE3AI02	DA-04	41	19EE38023	DA-07
5	19CH30030	DA-05	42	19ME31042	DA-08
6	19CS30001	DA-06	43	20CE10065	DA-09
7	19CS30003	DA-07	44	20CS10004	DA-10
8	19CS30009	DA-08	45	20CS10014	DA-11
9	19CS30011	DA-09	46	20CS10021	DA-12
10	19CS30012	DA-10	47	20CS10022	DA-13
11	19CS30016	DA-11	48	20CS10032	DA-14
12	19CS30018	DA-12	49	20CS10034	DA-15
13	19CS30021	DA-13	50	20CS10035	DA-16
14	19CS30027	DA-14	51	20CS10038	DA-17
15	19CS30028	DA-15	52	20CS10040	DA-01
16	19CS30029	DA-16	53	20CS10043	DA-02
17	19CS30031	DA-17	54	20CS10044	DA-03
18	19CS30034	DA-01	55	20CS10048	DA-04
19	19CS30035	DA-02	56	20CS10051	DA-05
20	19CS30036	DA-03	57	20CS10059	DA-06
21	19CS30039	DA-04	58	20CS10073	DA-07
22	19CS30041	DA-05	59	20CS10075	DA-08
23	19CS30043	DA-06	60	20CS10078	DA-09
24	19CS30044	DA-07	61	20CS10086	DA-10
25	19CS30047	DA-08	62	20CS30009	DA-11
26	19CS30051	DA-09	63	20CS30010	DA-12
27	19CS30052	DA-10	64	20CS30014	DA-13
28	19CS30053	DA-11	65	20CS30025	DA-14
29	19CS30055	DA-12	66	20CS30032	DA-15
30	19EC39002	DA-13	67	20CS30035	DA-16
31	19EC39019	DA-14	68	20CS30036	DA-17
32	19EC39023	DA-15	69	20CS30038	DA-01
33	19EC39032	DA-16	70	20CS30047	DA-02
34	19EC39045	DA-17	71	20CS30049	DA-03
35	19EE38009	DA-01	72	20CS30055	DA-04
36	19EE38010	DA-02	73	20CS30067	DA-05

74	20CS30068	DA-06	117	23CS60R27	DA-15
75	20EE3FP59	DA-07	118	23CS60R28	DA-16
76	20IE10015	DA-08	119	23CS60R29	DA-17
77	20IE10017	DA-09	120	23CS60R30	DA-01
78	20IE10046	DA-10	121	23CS60R33	DA-02
79	20IM10019	DA-11	122	23CS60R34	DA-03
80	20IM30010	DA-12	123	23CS60R35	DA-04
81	20MF3IM10	DA-13	124	23CS60R37	DA-05
82	20MI31013	DA-14	125	23CS60R39	DA-06
83	20NA30021	DA-15	126	23CS60R40	DA-07
84	20QE30002	DA-16	127	23CS60R41	DA-08
85	20QM30005	DA-17	128	23CS60R42	DA-09
86	21BT10032	DA-01	129	23CS60R44	DA-10
87	21BT30021	DA-02	130	23CS60R45	DA-11
88	21BT30030	DA-03	131	23CS60R46	DA-12
89	21EC10061	DA-04	132	23CS60R48	DA-13
90	21PH10021	DA-05	133	23CS60R49	DA-14
91	21PH10040	DA-06	134	23CS60R50	DA-15
92	21PH10048	DA-07	135	23CS60R51	DA-16
93	22AE60R11	DA-08	136	23CS60R52	DA-17
94	22AR60R21	DA-09	137	23CS60R54	DA-01
95	22EC63R10	DA-10	138	23CS60R56	DA-02
96	23CD71P01	DA-11	139	23CS60R57	DA-03
97	23CS60A01	DA-12	140	23CS60R59	DA-04
98	23CS60D01	DA-13	141	23CS60R62	DA-05
99	23CS60D02	DA-14	142	23CS60R63	DA-06
100	23CS60D03	DA-15	143	23CS60R64	DA-07
101	23CS60R01	DA-16	144	23CS60R65	DA-08
102	23CS60R02	DA-17	145	23CS60R66	DA-09
103	23CS60R03	DA-01	146	23CS60R67	DA-10
104	23CS60R05	DA-02	147	23CS60R68	DA-11
105	23CS60R07	DA-03	148	23CS60R69	DA-12
106	23CS60R08	DA-04	149	23CS60R70	DA-13
107	23CS60R10	DA-05	150	23CS60R71	DA-14
108	23CS60R12	DA-06	151	23CS60R73	DA-15
109	23CS60R15	DA-07	152	23CS60R74	DA-16
110	23CS60R16	DA-08	153	23CS60R75	DA-17
111	23CS60R18	DA-09	154	23CS60R76	DA-01
112	23CS60R19	DA-10	155	23CS60R78	DA-02
113	23CS60R20	DA-11	156	23CS60R79	DA-03
114	23CS60R23	DA-12	157	23CS60R81	DA-04
115	23CS60R24	DA-13	158	23CS60R82	DA-05
116	23CS60R26	DA-14	159	23RE91R01	DA-06

Link to submit your project report:

https://docs.google.com/forms/d/e/1FAIpQLSdK1OiVpT-5hZfOdqQLHgUbD3bzLNpjX4jn_suFla31ynUp8g/viewform?usp=sf_link (Only one submission is allowed.)